Food allergy?
Researchers working to increase options by making wheat, peanuts less allergenic

THE United States Department of Agriculture identifies a group of “big eight” foods that causes 90 per cent of food allergies. Among them are wheat and peanuts.

Sachin Rustgi, a member of the Crop Science Society of America, studies how we can use breeding to develop less allergenic varieties of these foods. Rustgi recently presented his research at the virtual 2020 ASA-CSSA-SSSA Annual Meeting, a release from ScienceDaily said.

Allergic reactions caused by wheat and peanuts can, of course, be prevented by avoiding these foods.

“While that sounds simple, it is difficult in practice,” Rustgi is quoted as saying.

Avoiding wheat and peanuts means losing out on healthy food options. These two foods are nutritional powerhouses.

Wheat is a great source of energy, fibre, and vitamins. Peanuts provide proteins, good fats, vitamins, and minerals.

“People with food allergies can try hard to avoid the foods, but accidental exposure to an allergen is also possible,” said Rustgi.

Allergen exposure can lead to hospitalisation, especially for people with peanut allergies, the release said.

“For others, avoiding wheat and peanuts is not easy due to geographical, cultural, or economic reasons,” he explained.

Rustgi and his colleagues are using plant breeding and genetic engineering to develop less allergenic varieties of wheat and peanuts. Their goal is to increase food options for people with allergies.

For wheat, researchers focus on a group of proteins, called gluten.

The gluten in bread flour makes dough elastic. Gluten also contributes to the chewy texture of bread.

But gluten can cause an immune reaction for individuals with celiac disease, the release said. In addition, others experience non-celiac gluten sensitivity, leading to a variety of adverse symptoms.

Researchers have been trying to breed varieties of wheat with lower gluten content. The challenge, in part, lies in the complicated nature of gluten genetics. The information needed to make gluten is embedded in the DNA in wheat cells, the release continued.

But gluten isn't a single protein — it's a group of many different proteins. The instructions cells needed to make the individual gluten proteins are contained within different genes.

In wheat, these gluten genes are distributed all over a cell's DNA. Since so many portions of the DNA play a role in creating gluten, it is difficult for plant breeders to breed wheat varieties with lower gluten levels.

“When we started this research, a major question was whether it would be possible to work on a characteristic controlled by so many genes,” said Rustgi.

For peanuts, the situation is similar. Peanuts contain 16 different proteins recognised as allergens.

“Not all peanut proteins are equally allergenic,” says Rustgi.

Four proteins trigger an allergic reaction in more than half of peanut-sensitive individuals.

Like the gluten genes in wheat, the peanut allergen genes are spread throughout the peanut DNA.

“Affecting this many targets is not an easy task, even with current technology,” Rustgi admitted.

According to the release, the research team is testing many varieties of wheat and peanuts to find ones that are naturally less allergenic than others.

These low-allergenic varieties can be bred with crop varieties that have desirable traits, such as high yields or pest resistance. The goal is to develop low-allergenic wheat that can be grown commercially.

In addition to traditional breeding efforts, Rustgi is also using genetic engineering to reduce allergenic proteins in wheat and peanuts, the release said.

For example, a technology called CRISPR allows scientists to make very precise changes to a cell's DNA.

Rustgi is reportedly using CRISPR to target gluten genes in wheat. Recent improvements in CRISPR technology allow researchers to target many genes at once.

Genes targeted by CRISPR are changed or mutated. This means that cells can no longer 'read' these genes to make the specific proteins, the release explained.

“Disrupting the gluten genes in wheat could yield wheat with significantly lower levels of gluten. A similar approach would work in peanuts,” Rustgi said.

Other approaches include understanding how gluten production is regulated in wheat cells. As it turns out, one protein serves as a 'master regulator' for many gluten genes.

According to the release, that's important because disrupting this master regulator could lead to reduced amounts of gluten in wheat. Targeting a single gene is much easier than trying to disrupt the several gluten genes.

“Wheat and peanuts are the major sources of proteins to many, especially those living in resource-deprived conditions,” said Rustgi. “Finding affordable ways to make wheat and peanuts available for all is very important.”

Developing wheat and peanuts with reduced allergen levels is a key step toward this goal.

“These crops will also reduce accidental exposure to allergens,” he said. “Also, they would limit the severity of reactions if exposure did happen.”

Now you can read the Jamaica Observer ePaper anytime, anywhere. The Jamaica Observer ePaper is available to you at home or at work, and is the same edition as the printed copy available at


  1. We welcome reader comments on the top stories of the day. Some comments may be republished on the website or in the newspaper; email addresses will not be published.
  2. Please understand that comments are moderated and it is not always possible to publish all that have been submitted. We will, however, try to publish comments that are representative of all received.
  3. We ask that comments are civil and free of libellous or hateful material. Also please stick to the topic under discussion.
  4. Please do not write in block capitals since this makes your comment hard to read.
  5. Please don't use the comments to advertise. However, our advertising department can be more than accommodating if emailed:
  6. If readers wish to report offensive comments, suggest a correction or share a story then please email:
  7. Lastly, read our Terms and Conditions and Privacy Policy